Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25315, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322883

RESUMO

Ventricular septal rupture (VSR) is a catastrophic mechanical complication of acute myocardial infarction (AMI) that can result in acute heart failure. Delaying operative intervention frequently leads to cardiogenic shock and multi-organ failure. Here we report a case of massive anterior MI complicated with VSR that was discovered through cardiac Doppler ultrasound and suspected multiple organ hemorrhage. The patient showed signs of rapid cardiogenic shock and eventually died. The morphological changes of VSR and MI were identified during necropsy, and microscopic examinations of the heart, brain, and kidney revealed multiple organ hemorrhage. This autopsy case suggested that the complication of VSR caused by AMI results in a reduction of oxygen and nutrient content of the circulating blood throughout the body and, eventually, functional failure of multiple organs. We provide clinical and pathological evidence elucidating changes in multiple organs under the severe condition of post-infarction VSR and demonstrate the consequences of a lack of immediate surgery and sufficient medical intervention for a patient suffering from AMI with VSR.

2.
Am J Physiol Cell Physiol ; 326(2): C647-C658, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189133

RESUMO

Thoracic aortic aneurysm/dissection (TAAD) is a lethal vascular disease, and several pathological factors participate in aortic medial degeneration. We previously discovered that the complement C3a-C3aR axis in smooth muscle cells promotes the development of thoracic aortic dissection (TAD) through regulation of matrix metalloproteinase 2. However, discerning the specific complement pathway that is activated and elucidating how inflammation of the aortic wall is initiated remain unknown. We ascertained that the plasma levels of C3a and C5a were significantly elevated in patients with TAD and that the levels of C3a, C4a, and C5a were higher in acute TAD than in chronic TAD. We also confirmed the activation of the complement in a TAD mouse model. Subsequently, knocking out Cfb (Cfb) or C4 in mice with TAD revealed that the alternative pathway and Cfb played a significant role in the TAD process. Activation of the alternative pathway led to generation of the anaphylatoxins C3a and C5a, and knocking out their receptors reduced the recruitment of inflammatory cells to the aortic wall. Moreover, we used serum from wild-type mice or recombinant mice Cfb as an exogenous source of Cfb to treat Cfb KO mice and observed that it exacerbated the onset and rupture of TAD. Finally, we knocked out Cfb in the FBN1C1041G/+ Marfan-syndrome mice and showed that the occurrence of TAA was reduced. In summary, the alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.NEW & NOTEWORTHY The alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Azidas , Desoxiglucose/análogos & derivados , Humanos , Camundongos , Animais , Via Alternativa do Complemento , Metaloproteinase 2 da Matriz , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Dissecção Aórtica/genética , Inflamação
3.
Signal Transduct Target Ther ; 8(1): 394, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828006

RESUMO

Immune cell infiltration in response to myocyte death regulates extracellular matrix remodeling and scar formation after myocardial infarction (MI). Caspase-recruitment domain family member 9 (CARD9) acts as an adapter that mediates the transduction of pro-inflammatory signaling cascades in innate immunity; however, its role in cardiac injury and repair post-MI remains unclear. We found that Card9 was one of the most upregulated Card genes in the ischemic myocardium of mice. CARD9 expression increased considerably 1 day post-MI and declined by day 7 post-MI. Moreover, CARD9 was mainly expressed in F4/80-positive macrophages. Card9 knockout (KO) led to left ventricular function improvement and infarct scar size reduction in mice 28 days post-MI. Additionally, Card9 KO suppressed cardiomyocyte apoptosis in the border region and attenuated matrix metalloproteinase (MMP) expression. RNA sequencing revealed that Card9 KO significantly suppressed lipocalin 2 (Lcn2) expression post-MI. Both LCN2 and the receptor solute carrier family 22 member 17 (SL22A17) were detected in macrophages. Subsequently, we demonstrated that Card9 overexpression increased LCN2 expression, while Card9 KO inhibited necrotic cell-induced LCN2 upregulation in macrophages, likely through NF-κB. Lcn2 KO showed beneficial effects post-MI, and recombinant LCN2 diminished the protective effects of Card9 KO in vivo. Lcn2 KO reduced MMP9 post-MI, and Lcn2 overexpression increased Mmp9 expression in macrophages. Slc22a17 knockdown in macrophages reduced MMP9 release with recombinant LCN2 treatment. In conclusion, our results demonstrate that macrophage CARD9 mediates the deterioration of cardiac function and adverse remodeling post-MI via LCN2.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Animais , Camundongos , Proteínas Adaptadoras de Sinalização CARD , Lipocalina-2/genética , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Infarto do Miocárdio/metabolismo
4.
BMC Pulm Med ; 23(1): 258, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452319

RESUMO

BACKGROUND: Neutrophils consume a large amount of energy when performing their functions. Compared with other white blood cells, neutrophils contain few mitochondria and mainly rely on glycolysis and gluconeogenesis to produce ATP. The inflammatory site is hypoxic and nutrient poor. Our aim is to study the role of abnormal adenosine metabolism of neutrophils in the asthmatic airway inflammation microenvironment. METHOD: In this study, an asthma model was established by intratracheal instillation of Aspergillus fumigatus extract in Ecto-5'-Nucleotidase (CD73) gene-knockout and wild-type mice. Multiple analyses from bronchoalveolar lavage fluid (BALF) were used to determine the levels of cytokines and chemokines. Immunohistochemistry was used to detect subcutaneous fibrosis and inflammatory cell infiltration. Finally, adenosine 5'-(α, ß-methylene) diphosphate (APCP), a CD73 inhibitor, was pumped subcutaneously before Aspergillus attack to observe the infiltration of inflammatory cells and subcutaneous fibrosis to clarify its therapeutic effect. RESULT: PAS staining showed that CD73 knockout inhibited pulmonary epithelial cell proliferation and bronchial fibrosis induced by Aspergillus extract. The genetic knockdownof CD73 significantly reduced the production of Th2 cytokines, interleukin (IL)-4, IL-6, IL-13, chemokine (C-C motif) ligand 5 (CCL5), eosinophil chemokine, neutrophil IL-17, and granulocyte colony-stimulating factor (G-CSF). In addition, exogenous adenosine supplementation increased airway inflammation. Finally, the CD73 inhibitor APCP was administered to reduce inflammation and subcutaneous fibrosis. CONCLUSION: Elevated adenosine metabolism plays an inflammatory role in asthma, and CD73 could be a potential therapeutic target for asthma.


Assuntos
Asma , Neutrófilos , Animais , Camundongos , Neutrófilos/metabolismo , Aspergillus fumigatus/metabolismo , Adenosina/metabolismo , Asma/terapia , Citocinas/metabolismo , Inflamação , Quimiocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Extratos Vegetais , Remodelação das Vias Aéreas
5.
PLoS One ; 17(4): e0267515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35439278

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0021104.].

6.
Aging (Albany NY) ; 13(4): 5164-5184, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535178

RESUMO

The Notch1-mediated inflammatory response participates in the development of abdominal aortic aneurysm (AAA). The vascular endogenous bioactive peptide intermedin (IMD) plays an important role in maintaining vascular homeostasis. However, whether IMD inhibits AAA by inhibiting Notch1-mediated inflammation is unclear. In this study, we found Notch intracellular domain (NICD) and hes1 expression were higher in AAA patients' aortas than in healthy controls. In angiotensin II (AngII)-induced AAA mouse model, IMD treatment significantly reduced AAA incidence and maximal aortic diameter. IMD inhibited AngII-enlarged aortas and -degraded elastic lamina, reduced NICD, hes1 and inflammatory factors expression, decreased infiltration of CD68 positive macrophages and the NOD-like receptor family pyrin domain containing 3 protein level. IMD inhibited lipopolysaccharide-induced macrophage migration in vitro and regulated macrophage polarization. Moreover, IMD overexpression significantly reduced CaCl2-induced AAA incidence and down-regulated NICD and hes1 expression. However, IMD deficiency showed opposite results. Mechanically, IMD treatment significantly decreased cleavage enzyme-a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) level. Pre-incubation with IMD17-47 (IMD receptors blocking peptide) and the phosphatidylinositol 3-kinase/protein kinase b (PI3K/Akt) inhibitor LY294002 reversed ADAM10 level. In conclusion, exogenous and endogenous IMD could inhibit the development of AAA by inhibiting Notch1 signaling-mediated inflammation via reducing ADAM10 through IMD receptor and PI3K/Akt pathway.


Assuntos
Aneurisma da Aorta Abdominal/genética , Inflamação/genética , Neuropeptídeos/genética , Receptor Notch1/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Angiotensina II/toxicidade , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Cloreto de Cálcio/toxicidade , Movimento Celular , Cromonas/farmacologia , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Morfolinas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hormônios Peptídicos/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
8.
Eur J Vasc Endovasc Surg ; 59(6): 1000-1010, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31879145

RESUMO

OBJECTIVE: Thoracic aortic dissection (TAD) has a high mortality rate. Intermittent hypoxia (IH) triggers both harmful and beneficial effects in numerous physiological systems. The effects of IH on TAD development were explored in a mouse model. METHODS: ß-Aminopropionitrile monofumarate (BAPN) was used to induce TAD in C57BL/6 mice. Three week old male mice were treated with 1 g/kg/day BAPN in drinking water for four weeks and simultaneously subjected to IH (n = 30) (21%-5% O2, 90 s/cycle, 10 h/day, IH + BAPN group) or normoxia (n = 30) (21% O2, 24 h/day, BAPN group). Human VSMCs (HUASMCs) exposed to IH (30 min, 5% O2)/re-oxygenation (30 min, 21% O2) cycles with a maximum of 60 min/cycle to detect the effect of IH on HIF-1α and LOX via HIF-1α-siRNA. RESULTS: It was found that BAPN administration significantly increased the lumen size and wall thickness of aortas compared with the normal group, but was significantly reversed by IH exposure. Additionally, IH exposure significantly increased the survival rate of BAPN induced TAD (70% vs. 40%). Furthermore, IH exposure reduced BAPN induced elastin breaks and apoptosis of vascular smooth muscle cells. IH exposure also reversed BAPN induced upregulation of inflammation and extracellular matrix (ECM) degradation. Real time polymerase chain reaction (RT-PCR) confirmed that IH inhibited inflammation and ECM degradation related genes interleukin (IL)-1ß, IL-6, cathepsin S (Cat S), and matrix metalloproteinase 9 (MMP-9), but upregulated the ECM synthesis related genes lysyl oxidase (LOX) and collagen type I alpha2 (Col1a2) compared with the BAPN group. In vitro results suggest that IH promotes the expression of LOX via HIF-1α. CONCLUSION: The results suggest that IH alleviates BAPN induced TAD in C57BL/6 mice.


Assuntos
Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/terapia , Dissecção Aórtica/terapia , Hipóxia/fisiopatologia , Pós-Condicionamento Isquêmico/métodos , Aminopropionitrilo/análogos & derivados , Aminopropionitrilo/toxicidade , Dissecção Aórtica/etiologia , Animais , Aorta Torácica/citologia , Aorta Torácica/efeitos dos fármacos , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/complicações , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Exp Cell Res ; 366(2): 127-138, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29551360

RESUMO

Inflammatory cells such as macrophages can play a pro-tumorigenic role in the tumor stroma. Tumor-associated macrophages (TAMs) generally display an M2 phenotype with tumor-promoting activity; however, the mechanisms regulating the TAM phenotype remain unclear. Complement 5a (C5a) is a cytokine-like polypeptide that is generated during complement system activation and is known to promote tumor growth. Herein, we investigated the role of C5a on macrophage polarization in colon cancer metastasis in mice. We found that deficiency of the C5a receptor (C5aR) severely impairs the metastatic ability of implanted colon cancer cells. C5aR was expressed on TAMs, which exhibited an M2-like functional profile in colon cancer liver metastatic lesions. Furthermore, C5a mediated macrophage polarization and this process relied substantially on activation of the nuclear factor-kappa B (NF-κB) pathway. Finally, analysis of human colon carcinoma indicated that C5aR expression is negatively associated with tumor differentiation grade. Our results demonstrate that C5aR has a central role in regulating the M2 phenotype of TAMs, which in turn, contributes to hepatic metastasis of colon cancer through NF-κB signaling. C5a is a potential novel marker for cancer prognosis and drugs targeting complement system activation, specifically the C5aR pathway, may offer new therapeutic opportunities for colon cancer management.


Assuntos
Neoplasias do Colo/patologia , Complemento C5a/metabolismo , Neoplasias Hepáticas/secundário , Macrófagos/patologia , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/fisiologia , Animais , Carcinogênese , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Complemento C5a/genética , Citocinas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais , Células Tumorais Cultivadas , Microambiente Tumoral
10.
Clin Sci (Lond) ; 131(12): 1287-1299, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468950

RESUMO

The degeneration of vascular smooth muscle cell(s) (SMC) is one of the key features of thoracic aortic aneurysm and dissection (TAAD). We and others have shown that elevated endoplasmic reticulum (ER) stress causes SMC loss and TAAD formation, however, the mechanism of how SMC dysfunction contributes to intimal damage, leading to TAAD, remains to be explored. In the present study, in vitro assay demonstrated that elevated mechanical stretch (18% elongation, 3600 cycles/h) stimulated the ER stress response and microparticle(s) (MP) production from both SMC and endothelial cell(s) (EC) in a time-dependent manner. Treatment of EC with isolated MP led to anoikis, which was determined by measuring the fluorescence of the ethidium homodimer (EthD-1) and Calcein AM cultured in hydrogel-coated plates and control plates. MP stimulation of EC also up-regulated the mRNA levels of inflammatory molecules (i.e. Vascular cellular adhesion molecular-1 (VCAM-1)), intercellular adhesion molecular-1 (ICAM-1), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6)). Use of an ER stress inhibitor or knockout of CHOP decreased mechanical stretch-induced MP production in SMC. In vivo, administration of an ER stress inhibitor or knockout of CHOP suppressed both apoptosis of EC and the infiltration of inflammatory cells. Moreover, TAAD formation was also suppressed by the administration of an ER stress inhibitor. In conclusion, our study demonstrates that elevated mechanical stretch induces MP formation in SMC leading to endothelial dysfunction, which is ER stress dependent. The inhibition of ER stress suppressed EC apoptosis, inflammation in the aorta, and TAAD development.


Assuntos
Aneurisma da Aorta Torácica/metabolismo , Dissecção Aórtica/metabolismo , Micropartículas Derivadas de Células/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células Endoteliais/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Aminopropionitrilo , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Animais , Anoikis , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Micropartículas Derivadas de Células/patologia , Células Cultivadas , Modelos Animais de Doenças , Retículo Endoplasmático/patologia , Células Endoteliais/patologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Comunicação Parácrina , Fenótipo , RNA Mensageiro/genética , Estresse Mecânico , Fatores de Tempo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 36(11): 2176-2190, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634835

RESUMO

OBJECTIVE: Oxidative stress plays a critical role in the development of abdominal aortic aneurysm (AAA). Intermedin (IMD) is a regulator of oxidative stress. Here, we investigated whether IMD reduces AAA by inhibiting oxidative stress. APPROACH AND RESULTS: In angiotensin II-induced ApoE-/- mouse and CaCl2-induced C57BL/6J mouse model of AAA, IMD1-53 significantly reduced the incidence of AAA and maximal aortic diameter. Ultrasonography, hematoxylin, and eosin staining and Verhoeff-van Gieson staining showed that IMD1-53 significantly decreased the enlarged aortas and elastic lamina degradation induced by angiotensin II or CaCl2. Mechanistically, IMD1-53 attenuated oxidative stress, inflammation, vascular smooth muscle cell apoptosis, and matrix metalloproteinase activation. IMD1-53 inhibited the activation of redox-sensitive signaling pathways, decreased the mRNA and protein expression of nicotinamide adenine dinucleotide phosphate oxidase subunits, and reduced the activity of nicotinamide adenine dinucleotide phosphate oxidase in AAA mice. Expression of Nox4 was upregulated in human AAA segments and in angiotensin II-treated mouse aortas and was markedly decreased by IMD1-53. In vitro, vascular smooth muscle cells with small-interfering RNA knockdown of IMD showed significantly increased angiotensin II-induced reactive oxygen species, and small-interfering RNA knockdown of Nox4 markedly inhibited the reactive oxygen species. IMD knockdown further increased the apoptosis of vascular smooth muscle cells and inflammation, which was reversed by Nox4 knockdown. Preincubation with IMD17-47 and protein kinase A inhibitor H89 inhibited the effect of IMD1-53, reducing Nox4 protein levels. CONCLUSIONS: IMD1-53 could have a protective effect on AAA by inhibiting oxidative stress.


Assuntos
Antioxidantes/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Adrenomedulina/metabolismo , Angiotensina II , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apoptose/efeitos dos fármacos , Cloreto de Cálcio , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Genótipo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , NADPH Oxidases/metabolismo , Neuropeptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Fenótipo , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
12.
J Mol Cell Cardiol ; 99: 76-86, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27534720

RESUMO

Thoracic aortic aneurysm/dissection (TAAD) is characterized by excessive smooth muscle cell (SMC) loss, extracellular matrix (ECM) degradation and inflammation. However, the mechanism whereby signaling leads to SMC loss is unclear. We used senescence-associated (SA)-ß-gal staining and analysis of expression of senescence-related proteins (p53, p21, p19) to show that excessive mechanical stretch (20% elongation, 3600cycles/h, 48h) induced SMC senescence. SMC senescence was also detected in TAAD specimens from both mice and humans. High-performance liquid chromatography and luciferin-luciferase-based assay revealed that excessive mechanical stretch increased adenosine diphosphate (ADP) release from SMCs both in vivo and in vitro. Elevated ADP induced SMC senescence while genetic knockout of the ADP receptor, P2Y G protein-coupled receptor 12 (P2ry12), in mice protected against SMC senescence and inflammation. Both TAAD formation and rupture were significantly reduced in P2ry12-/- mice. SMCs from P2ry12-/- mice were resistant to senescence induced by excessive mechanical stretch or ADP treatment. Mechanistically, ADP treatment sustained Ras activation, whereas pharmacological inhibition of Ras protected against SMC senescence and reduced TAAD formation. Taken together, excessive mechanical stress may induce a sustained release of ADP and promote SMC senescence via P2ry12-dependent sustained Ras activation, thereby contributing to excessive inflammation and degeneration, which provides insights into TAAD formation and progression.


Assuntos
Difosfato de Adenosina/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Dissecção Aórtica/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Transdução de Sinais , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/etiologia , Dissecção Aórtica/patologia , Animais , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/etiologia , Aneurisma da Aorta Torácica/patologia , Biópsia , Senescência Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2Y12/deficiência , Receptores Purinérgicos P2Y12/genética , Estresse Mecânico , Ultrassonografia
13.
Cell Physiol Biochem ; 38(2): 670-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26849658

RESUMO

BACKGROUND/AIMS: Hypertension plays a critical role in the cardiac inflammation and injury. However, the mechanism of how hypertension causes the cardiac injury at a molecular level remains to be elucidated. METHODS: RNA-Seq has been demonstrated to be an effective approach for transcriptome analysis, which is essential to reveal the molecular constituents of cells and tissues. In this study, we investigated the global molecular events associated with the mechanism of hypertension induced cardiac injury using RNA-Seq analysis. RESULTS: Our results showed that totally 1,801 genes with different expression variations were identified after Ang II infusion at 1, 3 and 7 days. Go analysis showed that the top 5 high enrichment Go terms were response to stress, response to wounding, cellular component organization, cell activation and defense response. KEGG pathway analysis revealed the top 5 significantly overrepresented pathways were associated with ECM-receptor interaction, focal adhesion, protein digestion and absorption, phagosome and asthma. Moreover, protein-protein interaction network analysis indicated that ubiquitin C may play a key role in the processes of hypertension-induced cardiac injury. CONCLUSION: Our study provides a comprehensive understanding of the transcriptome events in hypertension-induced cardiac pathology.


Assuntos
Perfilação da Expressão Gênica , Traumatismos Cardíacos/genética , Hipertensão/genética , Miocárdio/patologia , Transcriptoma , Animais , Fibrose , Regulação da Expressão Gênica , Ontologia Genética , Traumatismos Cardíacos/complicações , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Hipertensão/complicações , Hipertensão/metabolismo , Hipertensão/patologia , Inflamação/complicações , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Miocárdio/metabolismo , Mapas de Interação de Proteínas
14.
J Pathol ; 236(3): 373-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25788370

RESUMO

Thoracic aortic aneurysm/dissection (TAAD) is characterized by excessive smooth muscle cell (SMC) loss, extracellular matrix (ECM) degradation and inflammation. In response to certain stimuli, endoplasmic reticulum (ER) stress is activated and regulates apoptosis and inflammation. Excessive apoptosis promotes aortic inflammation and degeneration, leading to TAAD. Therefore, we studied the role of ER stress in TAAD formation. A lysyl oxidase inhibitor, 3-aminopropionitrile fumarate (BAPN), was administrated to induce TAAD formation in mice, which showed significant SMC loss (α-SMA level). Excessive apoptosis (TUNEL staining) and ER stress (ATF4 and CHOP), along with inflammation, were present in TAAD samples from both mouse and human. Transcriptional profiling of SMCs after mechanical stress demonstrated the expression of genes for ER stress and inflammation. To explore the causal role of ER stress in initiating degenerative signalling events and TAAD, we treated wild-type (CHOP(+/+)) or CHOP(-/-) mice with BAPN and found that CHOP deficiency protected against TAAD formation and rupture, as well as reduction in α-SMA level. Both SMC apoptosis and inflammation were significantly reduced in CHOP(-/-) mice. Moreover, SMCs isolated from CHOP(-/-) mice were resistant to mechanical stress-induced apoptosis. Taken together, our results demonstrated that mechanical stress-induced ER stress promotes SMCs apoptosis, inflammation and degeneration, providing insight into TAAD formation and progression.


Assuntos
Aneurisma da Aorta Torácica/patologia , Apoptose , Estresse do Retículo Endoplasmático , Transdução de Sinais , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminopropionitrilo/farmacologia , Animais , Aorta/metabolismo , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
15.
Endocrinology ; 155(6): 2254-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24684303

RESUMO

Previous studies have indicated that adiponectin (APN) protects against cardiac remodeling, but the underlying mechanism remains unclear. The present study aimed to elucidate how APN regulates inflammatory responses and cardiac fibrosis in response to angiotensin II (Ang II). Male APN knockout (APN KO) mice and wild-type (WT) C57BL/6 littermates were sc infused with Ang II at 750 ng/kg per minute. Seven days after Ang II infusion, both APN KO and WT mice developed equally high blood pressure levels. However, APN KO mice developed more severe cardiac fibrosis and inflammation compared with WT mice. This finding was demonstrated by the up-regulation of collagen I, α-smooth muscle actin, IL-1ß, and TNF-α and increased macrophage infiltration in APN KO mice. Moreover, there were substantially fewer microtubule-associated protein 1 light chain 3-positive autophagosomes in macrophages in the hearts of Ang II-infused APN KO mice. Additional in vitro studies also revealed that globular APN treatment induced autophagy, inhibited Ang II-induced nuclear factor-κB activity, and enhanced the expression of antiinflammatory cytokines, including IL-10, macrophage galactose N-acetyl-galactosamine specific lectin 2, found in inflammatory zone 1, and type-1 arginase in macrophages. In contrast, APN-induced autophagy and antiinflammatory cytokine expression was diminished in Atg5-knockdown macrophages or by Compound C, an inhibitor of adenosine 5'-monophosphate-activated protein kinase. Our study indicates that APN activates macrophage autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway and suppresses Ang II-induced inflammatory responses, thereby reducing the extent of cardiac fibrosis.


Assuntos
Adiponectina/farmacologia , Angiotensina II , Autofagia/efeitos dos fármacos , Inflamação/induzido quimicamente , Macrófagos/efeitos dos fármacos , Adiponectina/uso terapêutico , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Fibrose/induzido quimicamente , Fibrose/tratamento farmacológico , Imuno-Histoquímica , Técnicas In Vitro , Inflamação/tratamento farmacológico , Macrófagos/citologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real
16.
J Biol Chem ; 289(13): 9449-59, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24515110

RESUMO

It is well known that tumors damage affected tissues; however, the specific mechanism underlying such damage remains elusive. AMP-activated protein kinase (AMPK) senses energetic changes and regulates glucose metabolism. In this study, we examined the mechanisms by which AMPK promotes metabolic adaptation in the tumor-bearing liver using a murine model of colon cancer liver metastasis. Knock-out of AMPK α2 significantly enhanced tumor-induced glucose deprivation in the liver and increased the extent of liver injury and hepatocyte death. Mechanistically, we observed that AMPK α2 deficiency resulted in elevated reactive oxygen species, reduced mitophagy, and increased cell death in response to tumors or glucose deprivation in vitro. These results imply that AMPK α2 is essential for attenuation of liver injury during tumor metastasis via hepatic glucose deprivation and mitophagy-mediated inhibition of reactive oxygen species production. Therefore, AMPK α2 might represent an important therapeutic target for colon cancer metastasis-induced liver injury.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/deficiência , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Fígado/lesões , Fígado/metabolismo , Estresse Oxidativo , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Metabolismo Energético , Técnicas de Inativação de Genes , Hepatócitos/citologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos , Mitofagia , Necrose/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Cardiovasc Res ; 101(3): 454-63, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24319016

RESUMO

AIMS: Cathepsin S (Cat S) is a potent lysosomal protease that is secreted into the extracellular space and has been implicated in elastin and collagen degradation in diseases such as atherosclerosis. Elastin degradation plays an important role in vascular remodelling. However, the mechanism by which Cat regulates this process and its contribution to vein graft remodelling remains unclear. METHODS AND RESULTS: Using a murine vein graft model, we examined the expression pattern of Cat family members. Expression of cathepsin genes was induced in vein grafts, with that of Cat S being the highest. Elevated Cat S expression was confirmed in both mouse and human vein grafts. To explore the role of Cat S, vein grafts were created between wild-type (WT) littermates and Cat S knockout (Cat S KO) mice. Knockout of Cat S in the recipients (vein(CatS-KO)-artery(CatS-KO) or vein(WT)-artery(CatS-KO)) significantly inhibited neointima formation and reduced the accumulation of macrophages and proliferation of smooth muscle cells in vein grafts. Knockout of Cat S preserved the elastic fibre integrity of vein grafts and inhibited the migration of macrophages across the elastin fibres. CONCLUSION: These results demonstrated that Cat S contributes to macrophage migration via degradation of elastic fibre integrity to facilitate neointima formation of vein grafts, which might provide a novel therapeutic target for preserving vein graft patency.


Assuntos
Catepsinas/metabolismo , Movimento Celular , Tecido Elástico/patologia , Hiperplasia/metabolismo , Macrófagos/metabolismo , Neointima/patologia , Animais , Catepsinas/genética , Modelos Animais de Doenças , Hiperplasia/patologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/cirurgia , Transdução de Sinais/fisiologia , Veias/transplante
18.
Cardiovasc Drugs Ther ; 27(6): 521-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23887740

RESUMO

PURPOSE: Platelets are essential for primary hemostasis; however, platelet activation also plays an important proinflammatory role. Inflammation promotes the development of cardiac fibrosis and heart failure induced by hypertension. In this study, we aimed to determine whether inhibiting platelet activation using clopidogrel could inhibit hypertension-induced cardiac inflammation and fibrosis. METHODS: Using a mouse model of angiotensin II (Ang II) infusion (1,500 ng/[kg·min] for 7 days), we determined the role of platelet activation in Ang II infusion-induced cardiac inflammation and fibrosis using a P2Y12 receptor inhibitor, clopidogrel (50 mg/[kg·day]). RESULTS: CD41 staining showed that platelets accumulated in Ang II-infused hearts. Clopidogrel treatment inhibited Ang II infusion-induced accumulation of α-SMA(+) myofibroblasts and cardiac fibrosis (4.17 ± 1.26 vs. 1.46 ± 0.81, p < 0.05). Infiltration of inflammatory cells, including Mac-2(+) macrophages and CD45(+)Ly6G(+) neutrophils (30.38 ± 4.12 vs. 18.7 ± 2.38, p < 0.05), into Ang II-infused hearts was also suppressed by platelet inhibition. Real-time PCR and immunohistochemical staining showed that platelet inhibition significantly decreased the expression of interleukin-1ß and transforming growth factor-ß. Acute injection of Ang II or PE stimulated platelet activation and platelet-leukocyte conjugation, which were abolished by clopidogrel treatment. CONCLUSION: Thus, inhibition of platelet activation by clopidogrel prevents cardiac inflammation and fibrosis in response to Ang II. Taken together, our results indicate Ang II infusion-induced hypertension stimulated platelet activation and platelet-leukocyte conjugation, which initiated inflammatory responses that contributed to cardiac fibrosis.


Assuntos
Fibrose/prevenção & controle , Hipertensão/complicações , Miocardite/prevenção & controle , Inibidores da Agregação Plaquetária/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Ticlopidina/análogos & derivados , Angiotensina II , Animais , Clopidogrel , Fibrose/patologia , Hipertensão/induzido quimicamente , Hipertensão/patologia , Hipertensão/fisiopatologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/patologia , Miocárdio/patologia , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ticlopidina/farmacologia , Ticlopidina/uso terapêutico , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
19.
PLoS One ; 8(5): e62001, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658704

RESUMO

OBJECTIVE: Delayed or impaired reendothelialization is a major cause of stent thrombosis in the interventional treatment of coronary heart disease. T cells are involved in neointima formation of injured arteries. However, the regulated mechanism of reendothelialization and the role of CD8 T cell in reendothelialization are unclear. METHODS AND RESULTS: Immunofluorescence staining showed that CD8 positive cells were increased in wire injured femoral artery of mice. On day 21 after injury, elastin staining showed that knockout of CD8 (CD8(-/-)) significantly increased intimal thickness and a ratio of intima to media by 1.8 folds and 1.9 folds respectively in injured arteries. Evans blue staining showed that knockout of CD8 delayed the reendothelialization area on day 7 after injury (18.8±0.5% versus 42.1±5.6%, p<0.05). In vitro, a migration assay revealed that CD8(-/-) T cells co-cultured with WT macrophages significantly inhibited the migration of the endothelial cells (ECs); compared to CD4(+) T cells, and CD8(+) T cells could promote the ECs migration. Furthermore, real-time PCR analysis showed that knockout of CD8 increased the level of tumor necrosis factor α (TNF-α) in injured arteries and cytometric bead cytokine array showed that TNF-α was elevated in cultured CD8(-/-) T cells. Finally, a wound-healing assay showed that recombinant TNF-α significantly inhibited the migration of ECs. CONCLUSION: Our study suggested that CD8(+) T cells could promote the reendothelialization and inhibit the neointima formation after the artery wire injury, and this effect is at least partly dependent on decreasing TNF-α production promoting ECs migration.


Assuntos
Antígenos CD8/genética , Movimento Celular/efeitos dos fármacos , Células Endoteliais/patologia , Artéria Femoral/lesões , Técnicas de Inativação de Genes , Neointima/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Células Endoteliais/efeitos dos fármacos , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/metabolismo , Artéria Femoral/patologia , Deleção de Genes , Humanos , Masculino , Camundongos , Neointima/patologia , Proteínas Recombinantes/farmacologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/biossíntese
20.
Am J Hypertens ; 25(9): 994-1001, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22717542

RESUMO

BACKGROUND: The carboxyl terminus of heat shock protein 70-interacting protein (CHIP), an E3 ligase/chaperone, was found to protect cardiomyocytes against apoptosis induced by ischemic injury; however, the functional role of CHIP in remodeling induced by angiotensin II (Ang II) remains unclear. METHODS: We generated CHIP-overexpressed transgenic (TG) mice infused with Ang II (1,500 ng/kg/min) or saline for days or small interfering RNA (siRNA) knockdown of neonatal rat cardiomyocytes. Heart sections were stained with hematoxylin and eosin, Masson trichrome, TdT-mediated dUTP nick-end labeling (TUNEL) staining, and immunohistochemistry, and the levels of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPK) were measured by western blot analysis. RESULTS: Seven days after Ang II infusion, cardiac-specific overexpression of CHIP significantly enhanced cardiac contractile performance in mice and attenuated cardiac apoptosis, fibrosis, and inflammation: the number of TUNEL-positive cells, fibrotic areas, macrophage infiltration, and the expression of interleukin-1ß (IL-1ß), IL-6, monocyte chemoattractant protein-1 (MCP-1) and intercellular adhesion molecule-1 (ICAM-1) in heart tissues were decreased as compared with wild-type (WT) mice (all P < 0.05). In contrast, CHIP siRNA knockdown markedly increased Ang II-induced apoptosis and the expression of proinflammatory cytokines, as compared with siRNA control. The mechanisms underlying these beneficial actions were associated with CHIP-mediated inhibition of NF-κB and MAPK (p38 and JNK) pathways. CONCLUSIONS: CHIP plays an important role in regulating Ang II-triggered hypertensive cardiac apoptosis, inflammation, and fibrosis.


Assuntos
Angiotensina II/efeitos dos fármacos , Angiotensinas/antagonistas & inibidores , Coração/efeitos dos fármacos , Ubiquitina-Proteína Ligases/fisiologia , Animais , Apoptose/efeitos dos fármacos , Fibrose , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/patologia , Miócitos Cardíacos , NF-kappa B/antagonistas & inibidores , Ratos , Ubiquitina-Proteína Ligases/biossíntese , Remodelação Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...